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An efficient synthetic method was developed for poly-substituted naphthalenes via the multi-step, one-
pot domino reaction of d-ketonitriles involving a sequential Michael addition, intramolecular aldol, lact-
onization, decarboxylative Michael addition, and elimination processes.
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Regioselective synthesis of naphthalenes has been and contin-
ues to be of great interest in organic synthesis.1,2 A new synthetic
procedure is still highly desired due to the abundance of the skel-
eton in many biologically important natural products. Recently, we
reported the synthesis of 1-arylisoquinoline derivatives via the in-
dium-mediated Barbier-type allylation of nitrile group of d-keto-
nitrile 1a (Scheme 1).3 The starting material 1a was easily
prepared by the SNAr reaction of 2-fluorobenzophenone with
methyl cyanoacetate.3 During the studies we thought that 1a could
be used for the synthesis of naphthalene 10a via the sequential Mi-
chael addition to methyl acrylate (2a), intramolecular aldol con-
densation, and elimination of HCN (vide infra, Scheme 2).
However, compound 10a was not formed in any trace amounts,
and the major product was compound 3a, unexpectedly.

Initially we carried out the reaction of 1a with 3.0 equiv of
methyl acrylate (2a) and obtained moderate yield of 3a (41%).4

However, the yield of 3a increased to 61%, as shown in Scheme
1, when we used 5.0 equiv of 2a.4,5 The mechanism for the forma-
tion of 3a could be proposed as shown in Scheme 2: (i) Michael
addition of 1a to 2a produced 4a, (ii) intramolecular aldol-type
cyclization to 5a, (iii) lactonization to tricyclic intermediate 6a,6

(iv) base-mediated decarboxylative Michael addition7,8 to methyl
acrylate via 7a to produce 8a, and (v) E2 elimination of HCN to give
naphthalene 3a. As shown in Scheme 1, compounds 4a (3%), 8a
ll rights reserved.

: +82 62 530 3389.
(7%), and 9a (4%) were isolated together in low yields, and the re-
sults supported the proposed mechanism. Compound 9a might be
formed via the aerobic oxidation of 7a. We obtained 3a in 65% yield
under the same conditions (Cs2CO3, reflux) from 4a which was ob-
tained by the reaction of 1a and 2a under mild conditions (K2CO3,
50 �C),4 as shown in Scheme 3.

Encouraged by the results, we examined the reactions of 1a
with various Michael acceptors including ethyl acrylate (2b), phe-
nyl vinyl sulfone (2c), acrylonitrile (2d), and methyl vinyl ketone
(2e). When we used 2b and 2c, the corresponding naphthalenes
3b and 3c were obtained in moderate yields (entries 2 and 3 in
Table 1). However, the reactions with 2d and 2e showed the
formation of many intractable complex mixtures.9 The reactions
of other d-ketonitriles 1b–d and 2a afforded the corresponding
naphthalenes (3a, 3d, and 3e) in moderate yields (entries 4–6).
The formation of 3a from 1b and 2a (entry 4) supported again
the proposed mechanism in Scheme 2. It is interesting to note that
the reaction of 1e (entry 7) afforded 3a by following the mecha-
nism proposed in Scheme 4. Compound 1e has two acidic benzylic
protons and Michael addition occurred two times to produce 11,
which produced 3a via dehydrative cyclization and elimination
of HCN.

As a synthetic application of the synthesized naphthalene, we
examined the Friedel–Crafts reaction of 3a, as shown in Scheme
5. Hydrolysis of 3a (LiOH, aq THF) afforded the corresponding dia-
cid in 92%. Treatment of this crude diacid with H2SO4 (10 equiv) in
1,2-dichloroethane afforded fluorenone derivative 12 and peri-
naphthenone derivative 13.5,10 When the reaction stopped
after 6 h, compounds 12 and 13 were isolated in 80% and 5%,
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respectively. When we run the reaction for longer time (30 h), the
amount of 13 increased to 60%. Compound 13 might be formed via
the air oxidation of 13’ which was formed by the Friedel–Crafts
reaction of 12. We could not detect the formation of 14 in the
reaction.
1e
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Scheme
In summary, we disclosed an efficient synthesis of poly-substi-
tuted naphthalenes via the multi-step, one-pot domino reaction of
d-ketonitriles involving a sequential Michael addition, intramolec-
ular aldol, lactonization, decarboxylative Michael addition, and
elimination processes.
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Table 1
Synthesis of poly-substituted naphthalenesa

Entry Substrate 1 Substrate 2 Product (%)

1

COPh

COOMe

CN

1a

COOMe

2a

Ph
COOMe

3a (61) COOMe

2 1a

COOEt

2b

Ph
COOEt

3b (60) COOEt

3 1a

SO2Ph

2cb

Ph
SO2Ph

3c (69) SO2Ph

4

1b

COPh

COOEt

CN 2a 3a (57)

5

COPh

COOMe

CN

1c

F

2a

Ph
COOMe

3d (63) COOMe

F

6c

COAr

COOMe

CN

1d
2a

Ar
COOMe

3e (61) COOMe

7

COPh

CN

1e

2a 3a (60)

a Conditions: 1 (1.0 mmol), 2 (5.0 equiv), Cs2CO3 (2.0 equiv, CH3CN, reflux, 20 h
(8 h for entry 3).

b 3.0 equiv of 2c.
c Ar is 4-methoxyphenyl.
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